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We examine the phenomenon of polymer drag reduction in a turbulent flow
through Brownian dynamics simulations. The dynamics of a large number of single
polymer chains along their trajectories is investigated in a Newtonian turbulent
channel flow. In particular, the FENE, FENE-P and multimode FENE models with
realistic parameters are used to investigate the mechanisms of polymer stretching. A
topological methodology is applied to characterize the ability of the flow to stretch
the polymers. It is found using conditional statistics that at moderate Weissenberg
number Wi the polymers, that are stretched to a large fraction of their maximum
extensibility, have experienced a strong biaxial extensional flow. When Wi is increased
other flow types can stretch the polymers but the few highly extended molecules again
have, on average, experienced a biaxial extensional flow. Moreover, highly extended
polymers are found in the near-wall regions around the quasi-streamwise vortices,
essentially in regions of strong biaxial extensional flow.

1. Introduction
Numerous studies of turbulent drag reduction by polymer additives have been per-

formed since its first experimental observation by Toms (1948) and different mecha-
nisms have been proposed (Lumley 1969; Tabor & De Gennes 1986; Sreenivasan
& White 2000), but a conclusive explanation of the physics associated with the
phenomenon is still lacking. Most of the recent numerical studies have focused on
a continuum approach, i.e. solving a constitutive equation (Oldroyd-B, FENE-P) in
an Eulerian frame of reference, e.g. Dimitropoulos, Sureshkumar & Beris (1998),
Min et al. (2003), Dubief & Lele (2001), Sibilla & Baron (2002), Den Toonder et al.
(1997). This has the advantage of allowing the polymer stress calculation at each
grid cell; therefore the effect of the polymers on the flow can be determined. Many
studies using this approach have shown significant drag reduction and the simulations
reproduce qualitatively the results obtained experimentally. However, the accuracy of
the constitutive equation has always been questioned, since it is either based on an
unphysical model in the case of the Oldroyd-B or based on a closure approximation
in the case of the FENE-P. Moreover, Dubief et al. (2004) have shown that the
continuum calculations are affected by a lack of resolution in the low drag reduction
regime limit, which prevents any conclusive explanation of the onset of drag reduction.
This resolution problem due to small scales is generated by the advection term in the
Eulerian representation which can be avoided by the use of a Lagrangian description.
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The Lagrangian approach is also very useful in order to assess the models used
in the Eulerian calculations, since it allows the use of more accurate models (FENE,
FENE chain, bead–rod) as a representation of the polymer molecule. Moreover, the
detailed mechanisms of polymer dynamics and the influence of the internal modes
can be studied since the equations are solved for each polymer molecule along its
trajectory.

Massah et al. (1993) have performed a Lagrangian simulation in a turbulent channel
flow using an accurate bead–spring chain. They have shown that polymers can also
unravel within the viscous sublayer if the Weissenberg number is large enough. Ilg
et al. (2002) have compared the FENE and FENE-P models in wall turbulent flow
and observed that polymers become highly oriented parallel to the mean flow direction
and are characterized by a broad distribution of extensions. Stone & Graham (2003)
demonstrated in a model of the turbulent buffer layer that stretching of the polymers is
determined by the largest Lyapunov exponent for the velocity field and that polymers
become highly stretched in the near-wall streaks and relax as they move into and
around the streamwise vortex cores. Finally, Zhou & Akhavan (2003) have compared
different models and shown that the dominant contributions to the polymer stress
arise from patches of biaxial and uniaxial elongational flow encountered in the buffer
layer. However, all these studies are based on a small number of different trajectories
and they have therefore been based on limited statistical evidence.

In this study, the FENE dumbbell model is used to investigate the polymer dynamics
in a turbulent channel flow. Terrapon et al. (2003) have demonstrated that the FENE
chain, the FENE dumbbell and the FENE-P models give qualitatively similar results.
This motivates the choice for the FENE dumbbell model since it is computationally
less expensive than a bead–spring chain and reproduces accurately the polymer
dynamics in a turbulent flow. However, a bead–spring chain model and the FENE-P
model have also been used in one case in order to validate the present findings for
other models. Unlike previous studies, a large ensemble of polymer molecules is used
in order to sample the broad range of flow types present in a turbulent flow and a
new method of statistical interpretation is introduced.

2. Models and numerical implementation
The Lagrangian description is based on tracking the centre of mass of a large

ensemble of polymer molecules and solving the conformation equation for their
extension vector along their trajectories. The Newtonian turbulent flow field is
obtained from a direct numerical simulation of a channel flow.

The integration of the polymer molecule trajectories assumes that the molecule
centre-of-mass motion is characterized by no inertia and an infinite Péclet number.
Therefore, these trajectories represent an exact Lagrangian description of the flow.
The equation for the position of their centre of mass is given by

dx
dt

= up(x), (2.1)

where up is the velocity of the polymer molecule at its position x which needs to be
interpolated from the velocity field. In this equation and throughout the paper all
variables are made dimensionless with the centreline velocity Uc of the corresponding
Poiseuille flow and the half-height h of the channel.

The Finitely Extensible Nonlinear Elastic (FENE) model is based on an elastic
dumbbell which represents the polymer molecule as two beads connected by a
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spring (Bird et al. 1987). The nonlinear spring force is modelled by a Warner spring
representing the entropic forces which tend to bring the polymer back into its coiled
configuration. The nonlinearity of the spring ensures that the dumbbell cannot extend
more than a given maximum extension qmax =

√
b. The equation for the extension

vector of the polymer is derived by neglecting the inertia of the beads and equilibrating
the different forces acting on the beads, i.e. the drag force, the nonlinear spring force
and the Brownian force representing the collision of the beads with the molecules of
the solvent. After non-dimensionalization the equation for the end-to-end vector q of
the dumbbell is

dq
dt

= ∇u · q − 1

Wi

q
2(1 − q2/b)

− 1√
Wi

dW
dt

, (2.2)

where the Wiener process W represents the Brownian contribution (note that a Wiener
process is strictly speaking non-differentiable) and ∇u is the velocity gradient tensor
at the position of the centre of mass of the polymer molecule. Again the time t and
the velocity gradient tensor are made dimensionless with Uc and h. The Weissenberg
number Wi = λUc/h is defined as the ratio of the relaxation time λ of the polymer
to the characteristic time h/Uc of the flow. In wall units the Weissenberg number is
defined as Wi+ = λu2

τ /ν where uτ and ν are respectively the friction velocity and the
viscosity of the solvent.

The flow calculation is performed with an incompressible second-order finite-
differences code on a staggered grid. The time advancement used is a third-order
Runge–Kutta/Crank–Nicholson scheme (for more details see Dubief et al. 2004).
Equations (2.1) and (2.2) are solved using a smaller time step than the time step used
for the flow field calculation. Therefore, the velocity at the intermediate time steps is
obtained by linearly interpolating two flow fields in time. The polymer molecule itself
is advanced using a second-order Runge–Kutta scheme. Since the Eulerian velocity
is only known on a grid network, a spatial interpolation is needed to determine the
velocity at its current position. The trilinear interpolation was found to be sufficient
(see Terrapon et al. 2003 for a more detailed discussion). Finally, the time integration
of (2.2) uses a semi-implicit predictor–corrector scheme (Oettinger 1996; Somasi et al.
2002).

3. Topological methodology
As mentioned previously, the second term on the right-hand side of (2.2) corres-

ponds to the spring force which tends to bring back the polymer molecule to its coil
configuration. It opposes the tendency of the flow to stretch the polymer and ensures
therefore a bounded extension. Its nonlinearity becomes important when it approaches
its maximal extension. The third term on the right-hand side of (2.2) represents the
Brownian motion and has a zero mean. This term only adds a stochastic character to
the dynamics and becomes less important at high Wi . Thus the stretching of a polymer
molecule is mainly driven by the first term on the right-hand side of (2.2), unless
the polymer is sitting near regions of simple shear flow where Brownian motion
and advection balance in the configuration dynamics. The use of the topological
methodology introduced by Chong, Perry & Cantwell (1990) is motivated by the
analogy of (2.2) and the equation for the flow patterns at a critical point

d y
dt

= ∇u · y, (3.1)

where y determines the shape of the local flow field seen by an observer travelling with
a fluid particle (like the polymer molecules in this case) and ∇u is the velocity gradient
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tensor. Equation (3.1) would represent the trajectories of the dumbbell beads in the
absence of the spring and Brownian forces. Indubitably the entropic and Brownian
forces alter this dynamics but since the spring force only constrains the stretching of
the molecule, the unravelling of the polymer molecule is driven by the first term on
the right-hand side of (2.2). Therefore, it is very instructive to analyse this term in
more detail.

The topological methodology is based on the solutions of (3.1) rewritten in its
canonical form. The flow topologies of an incompressible flow can then be classified
according to the eigenvalues of the velocity gradient tensor (Chong et al. 1990;
Blackburn, Mansour & Cantwell 1996). These eigenvalues define the three-
dimensional flow type seen by a polymer molecule at its location. For an incompressi-
ble flow the eigenvalues, σ , are obtained as solutions of the characteristic equation

σ 3 + Qσ + R = 0, (3.2)

with the tensor invariants Q and R given by

Q = − 1
2
tr((∇u)2), (3.3a)

R = −det(∇u). (3.3b)

The nature of the eigenvalues is determined by the discriminant D = (27/4)R2 + Q3.
D > 0 gives rise to one real, two complex-conjugate eigenvalues; D < 0 gives three
real distinct eigenvalues and D = 0 corresponds to three real eigenvalues of which
two are equal. A further classification can be made according to the values of Q

and R (see figure 2 in Blackburn et al. 1996), e.g. Q measures the difference between
rotation and strain of the local flow. One can think of the imaginary part of the
eigenvalues as a measure of the local rotational character of the flow, whereas the
real part quantifies its extensional character, i.e. a negative/positive real part indicates
respectively a compression/extension in the corresponding direction. Note that this
classification does not give any information on the axis of extension/compression or
on the planes of rotation, which are in general not orthogonal.

De Gennes (1974) postulated that the coil–stretch transition of a polymer molecule
in a three-dimensional steady flow is determined by the positive real eigenvalues of
the velocity gradient tensor. However, because the sum of the eigenvalues vanishes in
an incompressible flow due to the continuity condition, a compression axis/plane is
always associated with an extension plane/axis. Thus, in the case of D > 0, even if
the real eigenvalue is negative (compression), the real part of the two other complex-
conjugate eigenvalues is positive. Therefore, the motion induced by these complex
eigenvalues involves both rotation from their imaginary part and an extensional
character dictated by their real part. It follows that a flow with D > 0 and R > 0
in a (Q, R) plot (implying a negative real eigenvalue and two complex-conjugate
eigenvalues with positive real parts) will unravel the polymer molecule at a sufficient
high Weissenberg number as illustrated in figure 1. In this particular case, the
stretching does not occur along a specific direction but along a rotating axis in
the plane associated with the complex-conjugate eigenvalues. This shows that the
stretching of the polymer is driven by the extensional character of the flow quantified
by the positive real part of the eigenvalues. From this topological analysis, one can
conclude that a polymer molecule will only fully unravel if it experiences a flow with
a strong extensional character, i.e. one of the eigenvalues of the local velocity gradient
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Figure 1. Normalized extension for a flow at Wi = 3 with Q = 0.5, R = 1.25 and D = 10.67
corresponding to the eigenvalues σ1,2 = 0.5 ± i and σ3 = −1; ——, FENE and · · · ·, FENE-P.
〈.〉 represents the ensemble average.

tensor has a large positive real part. Therefore, we introduce

σ ∗ ≡ max
i

(Re(σi)) (3.4)

as a measure of the ability of the flow to stretch the polymer molecule.
A similar analysis for the two-dimensional case has already been proposed by

Hur et al. (2002), who looked at the percentage of straining relative to the vorticity.
According to this analysis, a shear flow can be seen as a limiting case, since it does not
show a real coil–stretch transition but rather a tumbling dynamics as demonstrated
by Smith, Babcock & Chu (1999) and Hur et al. (2001). This tumbling is caused by
the Brownian motion which displaces extended molecules away from the extensional
axis towards the compression axis, leading to a recoil of the molecule. Such tumbling
dynamics can also be expected in a three-dimensional case when compression and
extension axes are very close to each other.

These previous considerations are only based on the start-up of steady flows. In a
turbulent flow, the velocity gradient tensor constantly changes with time, so that the
application of the above analysis becomes more complicated. Not only is the flow
type important but also its duration. Even a strong flow will not unravel a polymer
molecule if it does not last long enough. Therefore, these considerations motivate the
analysis of the flow topologies in a turbulent channel flow. Blackburn et al. (1996)
have shown that the joint probability distribution function (PDF) of Q and R has a
characteristic teardrop shape (see figure 2a). The isovalues of σ ∗ calculated from (3.4)
are shown in figure 2 (b). Combining these two plots indicates that strong events, i.e.
large σ ∗, are most likely to correspond to positive R, negative Q and negative D, i.e.
biaxial extension.

4. Results
The Navier–Stokes equation is solved in a minimal channel (Jimenez & Moin 1991)

at constant mass flux and a Reynolds number Re = Uch/ν = 7500, where ν is the
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Figure 2. (a) PDF plots of Q vs. R in the buffer layer (exponential scale from 3.5 × 10−5 to
0.16); (b) isosurfaces of σ ∗ as a function of Q and R.

viscosity of the solvent. The channel is periodic in the x- and z-directions and has
dimension πh×2h×h. The simulation has been carried out on a grid of 96×151×64
points giving a Reynolds number in wall units of Re+ = uτh/ν = 285 (where uτ is
the friction velocity) so that �x+ = 9.5, �y+ = 0.2 − 10 and �z+ = 4.5. Finally a
constant time step of �t = 0.01 was chosen, ensuring a maximum CFL = 0.6. To
achieve converged statistics, a large number of polymer molecules were needed. In
this case Np = 105 polymer molecules homogeneously distributed were used with
each of them having a different trajectory. The extensibility parameter was chosen to
be b = 3600 in order to simulate real molecules. Equation (2.2) was advanced using
a time step �tp = 0.001, which is ten times smaller than that of the flow calculation,
for a total time T = 50.0 after the transient part. Four different Weissenberg numbers
were compared, i.e. Wi = 1, 1.5, 3, 6 and respectively in wall units Wi+ = 11, 16, 34, 68.
Note that each single polymer molecule experiences the same velocity gradients for
all Weissenberg numbers.

Conditional statistics are used to investigate the stretching mechanisms. Statistics
are gathered for all polymer molecules whose extension q normalized by the maximum
extension qmax crosses a threshold value r . For each of these molecules the local σ ∗,
Q and R were recorded over a period of six time units before crossing the threshold
r . Then these quantities are averaged over all the considered molecules as a function
of the time �t . In a first step an arbitrary threshold value r = 0.65 was chosen and
statistics were gathered for different Wi . In a second step r was varied at a fixed
Wi = 3.0. The results are summarized in figure 3. Note that the smallest threshold
value chosen, i.e. r = 0.65, is larger than the mean extension found for a simple shear
flow at the maximum Wi considered here. Therefore, the polymer molecules crossing
this threshold can be considered as significantly extended. The mean value of σ ∗ is
plotted in figure 3(a, d ). One can see that at low Wi the polymer molecules experience
a burst in σ ∗ just before reaching the threshold value. When Wi is increased, the
maximum value of σ ∗ decreases (see figure 3a), as expected from § 3. Figure 3 (d )
illustrates that even at a larger Wi a large σ ∗ is needed to extend the polymer near
to its maximum extension. Therefore, one can conclude that only rare strong events,
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Figure 3. Conditional average of σ ∗, Q and R for the polymer molecules crossing the
threshold value q/qmax = r as a function of the time �t before crossing this threshold. (a, b, c)
r = 0.65 and ——, Wi = 1.0; – – –, Wi = 1.5; — · —, Wi = 3.0; · · · ·, Wi = 6.0. (d, e, f ) Wi = 3.0
and ——, r = 0.95; – – –, r = 0.85; — · —, r = 0.75; · · · ·, r = 0.65. Shown for comparison as a
thin continuous line: (a–c) results from a bead–spring chain with Nb = 11 beads at Wi = 1.5;
(d–f ) results from the FENE-P model for r = 0.95.

i.e. large σ ∗, can produce a large stretching of the polymer molecule at low Wi ;
at high Wi weaker events are needed but a large σ ∗ is more efficient and achieves
a larger extension of the polymer molecule. Figure 3 (b, c, e, f ) shows the conditional
mean for Q and R. It is clear from these plots that, at low Wi , the extended
molecules have experienced a strong biaxial extensional flow (see also figure 4 where
one can see that D is on average negative, corresponding to three real eigenvalues
and therefore to an extensional flow). This is also true at larger Wi for molecules
near their maximum extension (see figure 3e, f ). These results are in agreement with
figure 2 (a, b) which shows that the largest eigenvalues are rare events found at
negative Q. It is also found (not shown here) that these strong events are in general
characterized by a negative velocity gradient ∂u/∂x, a negative streamwise velocity u

and a positive wall-normal velocity v. It can therefore be deduced that these strong
events are on average correlated with ejections of low-speed fluid away from the wall.
Figure 4 shows the trajectory of the polymer molecules in a (Q, R) plot parametrized
by the time �t . All curves have a similar shape, which is a characteristic time
evolution during the stretching process. A change in the Weissenberg number or the
threshold value only affects the numerical values but the shape of the curve remains
identical.

In order to demonstrate the generality of the previous results, similar conditional
statistics have been gathered for the more accurate bead–spring chain model with
Nb = 11 beads at Wi = 1.5 and for r = 0.65 and for the FENE-P model at Wi = 3 and
for r = 0.95. The results are shown in figures 3 (a–c) and 3(d–f ) as a thin continuous
line and agree very well with those from the FENE model. This clearly demonstrates
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Figure 4. Mean time evolution of Q vs. R from �t = −1.0 to �t = 0. (a) r = 0.65 and ——,
Wi = 1.0; – – –, Wi = 1.5; — · —, Wi = 3.0. (b) Wi = 3.0 and ——, r = 0.95; – – –, r = 0.85;
— · —, r = 0.75. The dots correspond to time intervals of �t = 0.25. The line D = 0 is also
shown for comparison.

that the primary stretching mechanisms are the same for different models, even for
models with many relaxation modes.

Dubief & Delcayre (2000) showed that vortices can be detected by positive
isosurfaces of Q, where Q can also be computed as the difference between vorticity Ω

and straining S. It is therefore interesting to note that polymer stretching is associated
with negative values of Q, i.e. straining, whereas vortices are associated with positive
values, i.e. rotation. Flow visualizations also demonstrate that the regions of large σ ∗

are always located next to the vortices and can also be seen as structures advected by
the mean flow. This is illustrated in figure 5, which shows isosurfaces of Q representing
the vortices, isosurfaces of σ ∗ and the polymer molecules which are highly stretched.
The correlation between σ ∗ and the vortices is striking and can provide new insight
into the mechanisms of polymer drag reduction. Dubief et al. (2004) have already
shown by continuum calculations that polymers act on vortices by damping them.
From the present results, it seems clear that the polymer is first stretched in these
regions of large σ ∗ that are associated with the vortices.

As stated in the introduction, statistics were gathered in a Newtonian flow where the
polymer molecules were considered passive. In a high drag reduction regime, polymers
modify significantly the fluctuations of the turbulent velocity field. Therefore, similar
statistics have also been collected in a non-Newtonian flow computed with the method
of Dubief & Lele (2001) at drag reduction of approximatively 30%. The results were
qualitatively similar to the Newtonian case. Moreover, it was verified that the joint
probability distribution function of Q and R retains its characteristic teardrop shape
even at high drag reduction. Thus, it can be inferred that the mechanisms of polymer
stretching described in this paper are also valid for non-Newtonian flows. Lower
polymer extensions and flow quantities were calculated since the fluctuations of the
turbulent velocity field were significantly damped.

In terms of the onset of drag reduction, only very strong events can stretch the
polymers at very low values of Wi . It is not obvious that a coil–stretch transition is
necessary for the polymers to reduce drag but a sufficiently large extension is needed to
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Figure 5. Instantaneous view of the lower half of the channel showing the isosurface Q = 1.9
(grey) representing the vortices, the isosurface (turquoise) of σ ∗ = 1.6 and the polymer molecules
(red) with q/qmax > 0.8 at Wi = 3.

Figure 6. Number of polymer molecules having crossed q/qmax = r: (a) as a function of Wi
for r = 0.65; (b) as a function of r for Wi = 3.0.

produce stress. Bird et al. (1987) showed that Wiσ > 0.5 must be satisfied for a coil–
stretch transition to occur. This gives an absolute lower bound for the Weissenberg
number Wi cr = 0.5σ ∗

max below which no molecule can unravel. Assuming that drag
reduction scales nearly linearly with the number of polymers stretching, one would see
an important increase of drag reduction near what is apparently a critical Wi , since
the number of molecules achieving a coil–stretch transition increases dramatically
with Wi around this critical value (as illustrated in figure 6). This dramatic increase
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of the number of stretched molecules can be understood by the distribution of flow
types shown in figure 2 (a), where the probability of finding weaker events increases
exponentially.

5. Conclusions
Brownian dynamics simulations were used in a turbulent channel flow to investigate

the mechanisms of polymer dynamics. Flow types were characterized according to
the flow topologies and the quantity σ ∗ was introduced to measure the ability of the
flow to stretch the polymer molecules. A large range of Weissenberg numbers were
investigated and it was found that the polymers stretch primarily in straining flows
in the near-wall region next to the vortices. At low Wi rare events of strong biaxial
flows cause the chain to unravel whereas at higher Wi different flow types can
stretch the polymer molecule, but only bursts of biaxial extensional flow can fully
extend it. In summary, bursts of biaxial extensional flows, constrained by the flow
topology, occuring approximately 0.5h/Uc before the maximum extension are the
primary stretch mechanisms.
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REFERENCES

Bird, R., Curtiss, C., Armstrong, R. & Hassager, O. 1987 Dynamics of Polymer Liquids. 2nd Edn.
Wiley.

Blackburn, H., Mansour, N. & Cantwell, B. 1996 Topology of fine-scale motions in turbulent
channel flow. J. Fluid Mech. 310, 269–292.

Chong, M., Perry, A. & Cantwell, B. 1990 A general classification of three-dimensional flow
fields. Phys. Fluids A 2, 765–777.

De Gennes, P. G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity
gradients. J. Chem. Phys. 60, 5030–5042.

Den Toonder, J., Hulsen, M., Kuiken, G. & Nieuwstadt, F. 1997 Drag reduction by polymer
additives in a turbulent pipe flow: Numerical and laboratory experiments. J. Fluid Mech. 337,
193–231.

Dimitropoulos, C., Sureshkumar, R. & Beris, A. 1998 Direct numerical simulation of viscoelastic
turbulent channel flow exhibiting drag reduction: effect of the variation of rheological
parameters. J. Non-Newtonian Fluid Mech. 79, 433–468.

Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1(011),
1–22.

Dubief, Y. & Lele, S. 2001 Direct numerical simulation of polymer flow. Annual Research Briefs,
Center for Turbulent Research, Stanford University, pp. 197–208.

Dubief, Y., Terrapon, V., White, C., Shaqfeh, E., Moin, P. & Lele, S. 2004 New answers on the
interaction between polymers and vortices in turbulent flows. Flow, turbulence and combustion
(submitted).

Hur, J., Shaqfeh, E., Babcock, H. & Chu, S. 2002 Dynamics and configurational fluctuations of
single DNA molecules in linear mixed flows. Phys. Rev. E 66, 011915.

Hur, J., Shaqfeh, E., Babcock, H., Smith, D. & Chu, S. 2001 Dynamics of dilute and semidilute
DNA solutions in the start-up of shear flow. J. Rheol. 45, 421.

Ilg, P., de Angelis, E., Karlin, I., Casciola, C. & Succi, S. 2002 Polymer dynamics in wall
turbulent flow. Europhys. Lett. 58, 616–622.

Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225,
213–240.

Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367–384.



Simulated Polymer stretch in a turbulent flow using Brownian dynamics 71

Massah, H., Kontomaris, K., Schowalter, W. & Hanratty, T. 1993 The configurations of a
FENE bead-spring chain in transient rheological flows and in a turbulent flow. Phys. Fluids
A 5, 881–890.

Min, T., Yoo, J., Choi, H. & Joseph, D. 2003 Drag reduction by polymer additives in a turbulent
channel flow. J. Fluid Mech. 486, 213–238.

Oettinger, H. 1996 Stochastic Processes in Polymeric Fluids. Springer.

Sibilla, S. & Baron, A. 2002 Polymer stress statistics in the near-wall turbulent flow of a drag-
reducing solution. Phys. Fluids 14, 1123–1136.

Smith, D., Babcock, H. & Chu, S. 1999 Single-polymer dynamics in steady shear flow. Science 283,
1724.

Somasi, M., Komami, B., Woo, N., Hur, J. & Shaqfeh, E. 2002 Brownian dynamics simulations of
bead-rod and bead-spring chains: Numerical algorithms and coarse graining issues. J. Non-
Newtonian Fluid Mech. 108, 227–255.

Sreenivasan, K. & White, C. 2000 The onset of drag reduction by dilute polymer additives, and
the maximum drag reduction asymptote. J. Fluid Mech. 409, 149–164.

Stone, P. & Graham, M. 2003 Polymer dynamics in a model of the turbulent buffer layer. Phys.
Fluids 15, 1247–1256.

Tabor, M. & De Gennes, P. G. 1986 A cascade theory of drag reduction. Europhys. Lett. 2, 519–522.

Terrapon, V., Dubief, Y., Moin, P. & Shaqfeh, E. 2003 Brownian dynamics simulation in a
turbulent channel flow. Proc. 4th ASME-JSME Joint Fluids Eng. Conf., Honolulu.

Toms, B. 1948 Observation on the flow of linear polymer solutions through straight tubes at large
Reynolds numbers. Proc. Intl Rheological Congress 2, 135–141.

Zhou, Q. & Akhavan, R. 2003 A comparison of FENE and FENE-P dumbbell and chain models
in turbulent flow. J. Non-Newtonian Fluid Mech. 109, 115–155.


